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Abstract

In today’s computerized world, parsing is ubiquitous. Developers parse logs, queries to databases and
websites, programming and natural languages. When Java ecosystem maturity, concise syntax, and
runtime speed matters, developers choose parboiled2 that generates grammars for parsing expression
grammars (PEG). The following open source libraries have chosen parboiled2 for parsing facilities:

• akka-http is the Streaming-first HTTP server/module of Lightbend Akka
• Sangria is a Scala GraphQL implementation
• http4s is a minimal, idiomatic Scala interface for HTTP
• cornichon is Scala DSL for testing HTTP JSON API
• scala-uri is a simple Scala library for building and parsing URIs

The library uses a wide range of Scala facilities to provide required functionality. We also discuss
the extensions to PEGs. In particular, we show the implementation of an internal Scala DSL that
features intuitive syntax and semantics. We demonstrate how parboiled2 extensively uses Scala
typing to verify DSL integrity. We also show the connections to inner structures of parboiled2, which
can give the developer a better understanding of how to compose more effective grammars. Finally,
we expose how a grammar is expanded with Scala Macros to an effective runtime code.

1 Introduction

Computer specialists have been parsing programming languages and protocols since the
beginning of the computer era. They used Noam Chomsky’s generative system of gram-
mars, context-free grammars (CFGs), and regular expressions (REs) to encode syntax of
programming languages and protocols. One of the purposes of generative grammars was
to model natural languages and hence to inherit ambiguity in their design. The uncertainty
of CFGs brings unnecessary complexity to parsing in machine languages that are explicit
by design. There are several alternatives to CFGs to specify syntax formally.

Parser combinators (Wadler, 1995; Moors et al., 2008) are popular due to their readabil-
ity, modularity, and ease of maintenance, they cannot be fully used in production. The first
reason is that naive implementations do not handle left-recursive grammars, unless they are
implemented according to a solution given in (Frost et al., 2007). Another reason lies in the
expressive power that causes runtime inefficiency because of the composition overhead and
the creation of intermediate data structures. A significant performance speedup is given in
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(Béguet & Jonnalagedda, 2014) by removing overheads and deleting intermediate data rep-
resentations. The authors used meta-programming techniques such as macros (Burmako,
2013) and staging (Rompf & Odersky, 2010).

Parsing Expression Grammars (PEGs) are an alternative solution to the parsing problem.
The difference with CFGs is that PEGs eliminate the ambiguity by prioritized choice in
the process of recognition-based syntax describing (Ford, 2004). Virtually, PEGs make
a suitable replacement for REs (Mozzherin et al., 2017). PEGs work as fast as REs-
based parsers (even faster in some edge cases). The benefit is that PEGs allow natural
parsing of sequences that are defined recursively (XML, JSON, programming languages,
etc.). Finally, PEGs are much easier to read and maintain than REs, recognize left recur-
sion (Medeiros et al., 2014), support backtracking (Redziejowski, 2007), and semantic
actions (Atkey, 2012).

In the paper, we describe the implementation of the parboiled2 library. The parboiled2
is an implementation of PEGs parsers generators in the Scala programming language
(Odersky et al., 2016). parboiled2 is assembled as a regular Java Virtual Machine (JVM)
library. Any JVM-oriented development environment, profiler, debugger, tracer, etc. can
use the library.

The paper a) develops intuition about how to use PEGs with the parboiled2 DSL,
b) exposes inner structure of the library, c) explains tight connections of the library inner
parts, d) describes how macro generates a fast runtime code, e) lists current limitations of
the library.

Section 2 of the paper describes the core parts of a simple parboiled2 grammar. Section 3
introduces a high-level domain specific language (DSL) to describe rules of recognition.
Section 4 provides insight into the parsing process and describes its semantics in detail.
Section 5 explains how parboiled2 produces side effects with Value Stack. Section 6 ex-
plains how parboiled2 uses a Scala type checker to verify every rule and their composi-
tion. Section 7 explains the process of step-by-step code generation of macro definitions
(Burmako, 2013). Section 8 exposes the way how parboiled2 catches and handles parsing
errors.

2 Implementation of Inner Abstractions

A parser for a particular grammar should be derived from the Parser base class to inherit
all the necessary facilities to parse input string. The Parser inheritor expects the input of
type ParserInput in the constructor. parboiled2 provides implicit conversions from three
types to ParserInput type: String by default, Array[Char], and Array[Byte].

Consider a PEG that recognizes mathematical formulas of four basics operations with
precedence to non-negative integers (Fig. 1). The corresponding parboiled2 parser is shown
in Fig. 2. CalculatorParser is a Scala class. It contains a composition of rules that
determine the parsing process. Note that Expression (Fig. 2, line 3) has an explicit type
since it is recursively used in Factor (Fig. 2, line 9). All the rules bodies start with a rule

method call. The call body contains a composition of built-in rules from the DSL and calls
to other CalculatorParser rules in the scope.

The grammar in Fig. 1 is only recognized if the input string is an arithmetic expres-
sion. To be useful in practice, a parser performs semantic actions such as computing an
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expression ← term (('+' / '-') term)∗
term ← f actor (('*' / '/') f actor)∗
f actor ← number / ('(' expression ')')
number ← [0−9]+

Fig. 1. PEG for mathematical formulas of four operations to non-negative integers

1 class CalculatorParser(val input: ParserInput) extends Parser {
2 def InputLine = rule { Expression ∼ EOI }
3 def Expression: Rule1[Expr] = rule {
4 Term ∼ (’+’ ∼ Term ∼> Add | ’-’ ∼ Term ∼> Sub).*
5 }
6 def Term = rule {
7 Factor ∼ (’*’ ∼ Factor ∼> Mul | ’/’ ∼ Factor ∼> Div).*
8 }
9 def Factor = rule { Number | ’(’ ∼ Expression ∼ ’)’ }

10 def Number = rule { capture(CharPredicate.Digit .+) ∼>Val }

11 }

Fig. 2. parboiled2 rules for mathematical formulas

expression or emitting AST nodes. With the underlined code parts on lines 4, 7, 10 (Fig. 2)
CalculatorParser captures the input parts and produces AST nodes listed in Fig. 3.
CalculatorParser successfully parses the input string, and the result returned contains

AST nodes in the Scala interpreter as follows:

scala > new CalculatorParser("1+(2 -3*4)/5"). InputLine.run()
res0: scala.util.Try[Expr] =

Success(Add(Val(1),Mul(Val(2),Val (3))))

If parsing fails, it returns the Failure of ParseError type. ParseError contains all the
necessary information about errors to print a comprehensive string message that describes
why the parsing failed. The following example shows ParseError generation by feeding
an invalid string to a CalculatorParser constructor:

scala > val parser = new CalculatorParser("1+2!3")
scala > val Failure(e: ParseError) = parser.InputLine.run()
e: org.parboiled2.ParseError =

ParseError(Position (3,1,4), Position (3,1,4), <6 traces >)
scala > parser.formatError(e)
res1: String =
Invalid input ’!’, expected ’/’, ’+’, ’*’, ’EOI’, ’-’

sealed trait Expr
case class Val(value: String) extends Expr
case class Add(lhs: Expr , rhs: Expr) extends Expr
case class Sub(lhs: Expr , rhs: Expr) extends Expr
case class Mul(lhs: Expr , rhs: Expr) extends Expr
case class Div(lhs: Expr , rhs: Expr) extends Expr

Fig. 3. AST for mathematical formulas grammar
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or Digit (line 1, column 4):
1+2!3

Since the PEGs are recognition-based, a parser should define a rule Expression∼EOI
that would force the parser to move to the end of the input string. Otherwise, the parser
successfully parses the arithmetic expression ”1+2” until it encounters an unexpected char
’!’:

scala > new CalculatorParser("1+2!3"). Expression.run()
res2: scala.util.Try[Expr] = Success(Add(Val(1),Val (2)))

3 Rules DSL

CalculatorParser contains a composition of elementary rules that are listed in Table 1.
The rules are naturally grouped into three categories: basic, combinators, and semantic

actions. These categories are defined in the corresponding Scala traits RuleDSLBasics,
RuleDSLCombinators, RuleDSLActions. basic and combinators rules are derived from
the original definition of PEGs (Ford, 2004). semantic actions allow a parser to produce
useful results (like the AST of the parsed expression).

parboiled2 directs a developer to program a statically correct grammar with two facili-
ties.

The first facility against usage errors of the library is the rule macro. We designed every
parboiled2 rule call to exist only within the rule macro scope. If a rule is called somewhere
outside of the macro, the Scala compiler fails with an error. Practically every rule has an
annotation that prevents it from existing at compile-time. The rule macro erases the rule
calls by expanding their composition to a runnable code.

The second facility is the type system that helps to verify if a rule can be run against
the input. For example, Expression has a type stating that it returns an AST node of type
Expr. Hence, the entire rule composition of Expression body should be of type Expr.
Section 5 shows more sophisticated examples.

4 Semantics of Parsing

PEG parsers are recursive-descent parsers with backtracking. Most parsers produced by
traditional parser generators like ANTLR have two parsing phases, whereas PEGs have
only one parsing phase. PEGs do not require any look-ahead, and they perform quite well in
most real-world scenarios. However, certain pathological languages implemented in PEGs
and inputs exhibit exponential runtime (Ford, 2004).

When the runner executes a rule against the current position in an input buffer, the rule
applies its specific matching logic to the input. When a Parser calls a rule method,
it creates an instance of a ParserState class that stores reference to the input and the
cursor of the Int type. The cursor points to the next unmatched input character. In case
of successful parsing by rule, the parser advances the cursor and potentially executes the
next rule. Otherwise, when the rule fails, the cursor is reset to the last successful match.
And the parser backtracks in search for another parsing alternative that might succeed.

Consider this simple parboiled2 rule:
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Table 1. parboiled2 rules
Rule category parboiled2 rule PEG operator Description

Basic rules cha ’ ’ Literal character
strb ” ” Literal string
CharPredicatec [ ] Character class
ANYd . Any character

EOI Matches end of line
( ) (e) Grouping
anyOf()

Combinator rules e1 ∼ e2 e1 ∼ e2 Sequence
e1|e2 e1|e2 Prioritized Choice (First Of)
optional(e) e? Optional
zeroOrMore(e) e* Zero-or-more
oneOrMore(e) e+ One-or-more
&(e) &e And-predicate
!(e) !e Not-predicate

Semantic actions fn−→ Action operator
push(value) Pushes the value to the ValueStack
drop Drops a value from the ValueStack
capture(e) Pushes captured string to the ValueStack

a Extended by ignoreCase(c: Char) that matches an input char case insensitively
b Extended by ignoreCase(s: String) that matches an input string case insensitively
c An efficient implementation composable of character sets. It comes with a number pre-defined

character classes like CharPredicate.Digit or CharPredicate.LowerHexLetter
d Generalized to anyOf(chars: String) that matches any char of provided ones. noneOf(chars:
String) is an inversion of anyOf – fails on any of provided chars

def foo = rule { ’a’ ∼ (’b’ ∼ ’c’ | ’b’ ∼ ’d’) }

When the rule attempts to match against the input "abd", the parser performs the fol-
lowing steps:

#1. Rule foo starts executing, which calls its first sub-rule ’a’. The cursor sets to posi-
tion 0.

#2. Rule ’a’ is executed against the input at position 0, matches (succeeds), and the
cursor advances to position 1.

#3. Rule ’b’∼’c’|’b’∼’d’ starts executing, which calls its first sub-rule ’b’∼’c’.
#4. Rule ’b’∼’c’ starts executing, which calls its first sub-rule ’b’.
#5. Rule ’b’ is executed against the input position 1, matches (succeeds), and the cursor

advances to position 2.
#6. Rule ’c’ is executed against the input position 2 and mismatches (fails).
#7. Rule ’b’∼’c’|’b’∼’d’ notices that its first sub-rule has failed, resets the cursor to

position 1 and calls its second sub-rule ’b’∼’d’.
#8. Rule ’b’∼’d’ starts executing, which calls its first sub-rule ’b’.
#9. Rule ’b’ is executed against the input position 1, matches, and the cursor advances

to position 2.
#10. Rule ’d’ is executed against the input position 2, matches, and the cursor advances

to position 3.
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1. push accepts one or more arguments and immediately pushes to the ValueStack
2. capture accepts a rule as a single argument. If the provided rule succeeds to match, then the

captured part of the input is pushed to the ValueStack.

3. fn−→ (“action expression”) of arity n, pops values v1,v2, . . . ,vn (vn is assigned to the first
popped value, vn−1 – to the next popped, etc.) from the ValueStack, applies a given function
fn(v1,v2, . . . ,vn), and pushes the result back to the ValueStack.
Note the inversive order of sequential pops. We made this design decision to unify the usage of
the ValueStack. We suggest to keep in mind this memo: the ValueStack grows from left to right,
and arguments of the function fn are assigned from left to right from the most recently pushed
values that are at the right of the ValueStack.

4. zero-or-more(e,
f2−→) can be defined using binary “action expression” that becomes a “reduction

expression”. While e matches the input, the reduction zero-or-more pops one value from the
ValueStack after every successful match of e, applies f2 to it, and puts the result back to the
ValueStack.

Fig. 4. Extension to PEG: Semantic actions

#11. Rule ’b’∼’d’ completes successfully, as its last sub-rule has succeeded.
#12. Rule ’b’∼’c’|’b’∼’d’ completes successfully, as one of its sub-rules has suc-

ceeded.
#13. Rule foo completes execution successfully, as its last sub-rule has succeeded. The

whole input "abd" is matched, and the cursor is left at position 3 (after the last-
matched character).

5 Parsing Actions and Value Stack

The primary difference between parboiled2 and Scala combinator parsers lies in the way
they produce the result of parsing. Every Scala combinator parsers grammar is a com-
position of functions: they always produce a result that is then passed as an argument to
another parsing function. The problem is that parsing produces plenty of intermediate and
mostly redundant data structures that cause extra calls of memory allocations and garbage
collections in JVM. (Haoyi, 2014) solved this problem by writing an effective runtime
Scala code. (Jonnalagedda et al., 2014) used compile-time staging to eliminate redundant
data structures. parboiled2 introduces a particular data structure called ValueStack: the
library user should decide how to manipulate intermediate parsing structures.

The ValueStack is a mutable extension of Iterable[Any] that implements an untyped
stack of values. Parser creates a fresh new instance of the ValueStack upon every start
rule run. It is a private member of ParserState of Parser’s internals and it is not intended
to be used directly. We extend seven inductive definitions of parsing expressions given in
Section 3.1 of (Ford, 2004) with semantic actions to operate on the ValueStack in
Fig. 4. In addition, we extend relation ⇒G (Fig. 5): from triples of the form (e,x,S) to
triples of the form (n,o,S′), where e,x,n,o are defined in (Ford, 2004). S indicates the state
of the ValueStack before a matching attempt. S′ is the state after a matching attempt.

6 Typing of Rule DSL

parboiled2 uses the Scala type system to catch potential problems at the compile time in
two ways as follows:
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1. Standard expression: (e,x,S)⇒ (n,o,S). Any standard expression does not change the state of
the ValueStack.

2. Push: (push(v),x,S)⇒ (1,o,S.push(v))
3. Capture (success case): If (e,x,S)⇒ (n,o,S), then (capture(e),x,S)⇒ (n+1,o,S.push(o))
4. Capture (failure case): If (e,x,S)⇒ (n, f ,S), then (capture(e),x,S)⇒ (n+1, f ,S)
5. Action expression (success case): If (e,x,S) ⇒ (n,o,S), then n values are popped from

the ValueStack: vn = S.pop(),vn−1 = S.pop(), . . .v1 = S.pop() and (e  f,x,S) ⇒ (n +
1,o,S.push(f(v1,v2, . . .vn))

6. Action expression (failure case): If (e,x,S)⇒ (n, f ,S), then (e f,x,S)⇒ (n+1, f ,S)
7. Zero-or-more reduction (repetition case) If (e,x1x2y,S) ⇒ (n1,x1,S.push(x1)) and

(e∗(
f2−→),x1x2y,S) ⇒ (n2,x1x2,S.push(x1).push(x2)), then (e∗(

f2−→),x1x2y,S) ⇒ (n1 + n2 +
1,x1x2,S.push(f2(S.pop(),x1)).push(f2(S.pop(),x2)))

8. Zero-or-more reduction (termination case) if (e,x,S)⇒ (n1, f ,S), then (e∗(
f2−→),x,S)⇒ (n1 +

1,ε,S)

Fig. 5. Extension to relation⇒G

1. parboiled2 start rule can return a result of one of three types based on imported
DeliveryScheme implicits.

2. parboiled2 verifies access to the ValueStack based on types of rules. It allows
avoiding most of the inconsistent states of the ValueStack.

6.1 DeliveryScheme of Parsing Result

run method launches the start rule of a Parser against the provided input string. The
parsing then could end in one of three possible ways:

• success if the parser successfully matches the input. In this case, the parsing result
should hold an instance subclass of shapeless HList
• parseError if the parser fails to match against the given input. In this case, pars-

ing should return parboiled2.ParserError that contains information on why the
parsing failed
• error if the parser fails for an internal reason (division by zero, index out of range,

etc.). In this case, the parsing returns an instance of scala.Throwable subclass

parboiled2 supports three ways to deliver the success/failure result: scala.util.Try,
scala.Either, and simply throwing an exception. We abstract it to Result (embedded in
DeliveryScheme) that has three instances – one per type of the result. Fig. 6 shows the
implementation of DeliveryScheme for the scala.util.Try result type.

The run method implicitly accepts the particular instance of DeliveryScheme available
in the scope of calling. It then internally wraps the success or failure result by calling
scheme instance methods.

6.2 Rule Types

The parsing process changes the ValueStack as a side effect. Naive parsing can lead the
ValueStack to an inconsistent state. For example, a rule might pop a value from an empty
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trait DeliveryScheme[L <: HList] {
type Result
def success(result: L): Result
def parseError(error: ParseError ): Result
def failure(error: Throwable ): Result

}

implicit def Try[L <: HList] = new DeliveryScheme[L] {
type Result = Try[L]
def success(result: L) = Success(result)
def parseError(error: ParseError) = Failure(error)
def failure(error: Throwable) = Failure(error)

}

def run()( implicit scheme: Parser.DeliveryScheme[L]): scheme.Result = {
val result: HList = // ...
scheme.success(result)

}

Fig. 6. Varying result type of run configurable by implicitly provided deliver scheme

stack, or cast a popped value to a wrong type. The Scala type system prevents many invalid
operations at the type-checking phase of compilation.

We attach extra type information to Rule that keeps track on how it intends to change
the ValueStack. Rule is isomorphic to Scala functions: it accepts the input of a particular
type from the ValueStack values and produces an output of another type that pushes to the
ValueStack. From this perspective, Rule is defined in the same way as a regular function:
class Rule[-I <:HList, +O <:HList], where I and O are types of the input and the
output, respectively. For example, parser rules of the type Rule[Int::String::HNil,

String::HNil] are only allowed to pop from the ValueStack value of the Int type, then
of the String type (note the order: Int is first), and push a value only of the String type.

Basic rules are not intended to change the ValueStack (Fig. 1). They have the type
Rule0 = Rule[HNil, HNil].

Action rules change the ValueStack in a straightforward way. capture and push can only
push values to the ValueStack. The push rule pushes a value of any type unconditionally.
The capture rule expects that the provided inner rule matches, and only then it pushes the
matched string. It is the moment where the type-level computation happens: both capture

and push either decrease I if it is not HNil, or append to the output type O of the parent
rule.

The complimentary drop rule unconditionally pops and throws away one or more values
from the ValueStack. It either decreases the O type, if it’s not HNil, or extend the input
type I of the parent rule.

Action operator fn−→ can either decrease or prepend an additional type to either I or O. It
depends on the relation of how many arguments it simultaneously intends to pop and push
to the ValueStack.

More sophisticated type-level computations stand behind rule combinators. A Sequence

combinator should check whether type OLHS of the left-hand-side (LHS) rule is compatible
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def capture[I <: HList , O <: HList](r: Rule[I, O])
(implicit p: Prepend[O, String :: HNil ]): Rule[I, p.Out]

def push[T](value: T)( implicit h: HListable[T]): Rule[HNil , h.Out]

object HListable extends LowerPriorityHListable {
implicit def fromUnit: HListable[Unit] { type Out = HNil } = ‘n/a‘
implicit def fromHList[T <: HList]: HListable[T] { type Out = T } = ‘n/a‘

}
abstract class LowerPriorityHListable {

implicit def fromAnyRef[T]: HListable[T] { type Out = T :: HNil } = ‘n/a‘
}

Fig. 7. Type signature of basic rules

with IRHS of right-hand-side (RHS) rule, i.e., check if the LHS rule pushes the values of
types that RHS expects to pop from the ValueStack. If OLHS and IRHS are of different sizes,
the sequence combinator then checks either ILHS or ORHS, if it can handle a “larger” rule.

A special case of rule combinators is the so-called reduction rule. Consider this
common scenario of reducing the input string to a single value on the ValueStack. The
rule Factor from Fig. 2 is extended to handle multiplication operation:

(Factor: Rule1[Int]) ∼
zeroOrMore(’*’ ∼ Factor ∼> ((a: Int , b) => a * b))

zeroOrMore hosts two operations inside:

1. it matches Factor expression that pushes the value of type Int according to its type
2. then precisely in the same iteration of zeroOrMore it pops two values from the

ValueStack, and pushes those values multiplication back to the ValueStack

The type of the inner rule is Rule[Int::Int::HNil, Int::HNil]. Since Int::HNil is
nested to Int::Int::HNil, type of zeroOrMore is computed to Rule[Int::HNil, Int::HNil]

In total, starting from the empty ValueStack and intending to leave it empty or push
some values to it, a custom rules composition of the Rule types mutually fulfill constraints:

• the parsing ends with no values on the ValueStack, i.e., the grammar recognizes an
input. Or parsing stops with one or more values on the ValueStack

• a rule that pops values of some types from the ValueStack provides handling func-
tion of the same types

• none of the rules attempts to pop a value if the ValueStack is empty

It is worth mentioning that Scala erases all types information during compilation. It
means that there is no overhead of any sophisticated types-casts at runtime.

Next, we will describe some rules in detail. To keep the length of the paper reasonable,
we do not cover type signatures of all basic rules. We describe several simple rules to give
some intuition on how to read the rest of the rules.
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6.2.1 capture

capture (Fig. 7) pushes the matched string to the ValueStack. The capture takes any
valid rule r: Rule[I,O] as an argument. The capture resulting input type is the same
as the r’s input type. capture prepends String to r’s output type: O::String::HNil in
pseudonotation. shapeless higher kinded Prepend type of argument types O and String::HNil

computes capture’s output type and put it to p.Out.

6.2.2 push

push (Fig. 7) does not depend on any inner rule. It pushes a value of an arbitrary type T.
The complication arises from the cases of what type T might be:

• in case of Unit nothing is pushed. push that attempts to handle value of the Unit

type is equivalent to calling run

• T<:HList. Then all the values of HList are pushed as individual elements
• a single value of any other type T is pushed as is

This pattern match on the type level is implemented in parboiled2.support.HListable

type as follows. parboiled2 defines three implicits with appropriate Out types for each
case: Unit, T<:HList and low-priority AnyRef. Depending on type T and implied type
HListable[T], corresponding implicit with Out type would be given to value h of push.
Defining fromAnyRef as LowerPriorityHListable prevents its being given as an implicit
for h of any type.

6.2.3 sequence

sequence matches when both left-hand-side (LHS) and right-hand-side (RHS) rules are
matched. It implies that the LHS and RHS rules on the ValueStack should be compatible
on the type level. There are three possible cases:

• when both rules pop nothing from the ValueStack. No matter what they push to it
(even no values), the result would be a concatenation of OLHS and ORHS. In types (us-
ing abbreviated HList pseudonotation) it is encoded: Rule[,A]∼Rule[,B]=Rule[,A:B]

• Rule[A:B:C,D:E:F]∼Rule[F,G:H]=Rule[A:B:C,D:E:G:H] type describes the case
when the LHS rule pushes enough values to be popped by the RHS rule, no matter
what the LHS rule actually pops, and the RHS pushes. The result type should be as
it pops the LHS values, and the rightmost values of the LHS rules that are equivalent
to the popped values of the RHS rule wiped out and replaced by the pushed values
of the RHS rule

• and the final case is when the RHS rule pops more values than the LHS has pushed. In
this case, the result rule demands the missing values to pop and leaves the pushed val-
ues as they are. The encoded type is Rule[A,B:C]∼Rule[D:B:C,E:F]=Rule[D:A,E:F].

The type-level implementation of the algorithm is listed in Fig. 8.
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@tailrec def rec(L, LI, T, TI, R, RI) =
if (TI <: L) R
else if (LI <: T) RI.reverse ::: R
else if (LI <: HNil) rec(L, HNil , T, TI.tail , R, RI)
else if (TI <: HNil) rec(L, LI.tail , T, HNil , R, LI.head :: RI)
else rec(L, LI.tail , T, TI.tail , R, LI.head :: RI)

rec(L, L, T, T, R, HNil)

Fig. 8. Type-level implementation of sequence output type computation

7 Code Generation

When the Scala compiler ensures that the rules composition has valid types, it expands the
rule macros to the code that would be run at runtime. Next, we will describe all the steps
from the rule definition to its code generation.

Consider this rule:

val arule = rule { "ab" }

rule on the right of the equal sign is the Scala method defined as:

def rule[I <: HList , O <: HList](r: Rule[I, O]): Rule[I, O] =

macro ParserMacros.ruleImpl[I, O]

"ab" of the String type is neither the instance nor the subtype of type Rule[I,O].
The Scala compiler succeeds in finding the implicit: for this purpose, parboiled2 defines
implicit conversion from the String type to the Rule0 type in Parser class:

@compileTimeOnly("Calls to ‘str ‘ must be inside ‘rule ‘ macro")

implicit def str(s: String ): Rule0 = ‘n/a‘

After being applied, the implicit turns arule to:

val arule: Rule0 = rule { SimpleParser.this.str("ab"): Rule0 }

Both @compileTimeOnly and ‘n/a‘ (a method that throws IllegalStateException)
of the rule method guards the runtime execution from leaking of the str method: if the
execution path somehow reaches the str at runtime, it throws an exception. The macro
definition of the rule method evaporates all the definitions of the str method.

The rule method calls ParserMacros.ruleImpl[I,O]. ruleImpl is a special kind of
the method: it takes the Scala AST as an input, transforms it, and returns the transformed
Scala AST:

def ruleImpl[I <: HList: ctx.WeakTypeTag ,

O <: HList: ctx.WeakTypeTag]

(ctx:ParserContext)

(r: ctx.Expr[Rule[I, O]]): ctx.Expr[Rule[I, O]] = {

// ...

val opTreeCtx = new OpTreeContext[ctx.type] {

val c: ctx.type = ctx

}
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opTreeCtx.OpTree(r.tree)

// ...

}

The dedicated trait OpTree handles all possible rules transformations. ruleImpl creates
its instance and passes the AST r.tree to it. The opTreePF method transforms a definition
in the grammar to actual code:

val opTreePF: PartialFunction[Tree , Tree] = {

// ...

case q"$a.this.str($s)" =>
q"""

val matched =

input.sliceString(cursor , cursor + $s.length) == $s

if (matched) cursor += $s.length

matched

"""

// ...

}

When the case pattern is applied to the expression SimpleParser.this.str("ab"),
the values of a and s on the right hand side are respectively SimpleParser and "ab". The
naive implementation should do three things:

1. compare the input slice to the string "ab"

2. if the input matches, it advances the cursor (Section 3) further to the length of "ab"
3. return the Boolean result of the match

opTreePF matches not only primitives, but complex rules operands as well. Consider
the firstOf rule that is naturally coded as follows:

val opTreePF: PartialFunction[Tree , Tree] = {

case q"$lhs .|[$a, $b]($rhs)" =>
q"""

val cursorCurrent = cursor

if (lhs()) true

else {

cursor = cursorCurrent

if (rhs()) true

else {

cursor = cursorCurrent

false

}

}

"""

}

lhs and rhs are the rules that could be composed of primitives, other combinators, and
other rule calls. In the end, they are callable and return Boolean. For example, in case of
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("a" ∼ "b") | arule

the values of lhs and rhs would be ("a" ∼"b") and arule respectively.

7.1 Optimizations

The naive implementation generates a string slice on every match attempt. A possible
optimization towards the efficient implementation would be a char-by-char comparison
in the imperative style:

case q"$a.this.str($s)" => q"""

var ix = 0

while (ix < $s.length && cursorChar == $s.charAt(ix)) {

ix += 1

cursor += 1

}

ix == $s.length """

The next optimization step comes from the observation that in most cases a grammar
contains domain specific string literals known at compile time. A string literal, e.g. "abc",
is unrolled to the nested list of if/else-s as follows:

if (cursorChar == ’a’) {

cursor += 1

if (cursorChar == ’b’) {

cursor += 1

cursorChar == ’c’

} else false
} else false

Generally, opTreePF in the first turn checks if s is a literal string and then applies the
unroll function that generates if/else-s cascade:

def unroll(s: String , ix: Int = 0): Tree =

if (ix < s.length) q"""

if (cursorChar == ${s charAt ix}) {

cursor += 1

${unroll(s, ix + 1)}

} else false

""" else q"true"

case q"$a.this.str($s)" => s match {

case Literal(Constant(sc: String )) => unroll(sc)

case _ => // imperative code for general string match

Note how unroll mixes the code generation logic with assertions of what s is at compile-
time.

parboiled2 applies a few more optimizations as follows:
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• flatten a tree of sequence rules series
• same technique for firstOf rules series
• character sets (CharPredicate). They allow to determine if in the input character be-

longs to the set. parboiled2 comes with plenty of predefined sets (like CharPredicate.Digit
and CharPredicate.Alpha), and allows defining it from a function of the Char ->

Boolean type

7.2 Code Generation Limitation

The general limitation in a wider spread of effective code generation and optimizations
lies in the nature of Scala macros: the rule macro can only analyze the scope of a single
method. Consider the grammar:

val arule = rule { "a" }

val aarule = rule { arule ∼ arule }

Theoretically obvious optimization of aarule is to inline arule and squash sequence of
two "a"s to the single string "aa". But actually opTreePF only sees the arule call without
any non-hackable way to get the AST of the arule body.

8 Catching Parsing Errors

An important part of the parsing process is error reporting: to identify why the parsing
failed and at what position. The Scala compiler generates a code only once during the
compilation. The exact same code should parse the input and inform whether it fails to
parse and why. The process distinguishes two major phases:

• the parsing phase:

if (phase0_initialRun ())

scheme.success(valueStack.toHList[L]())

If it successfully finishes, run returns the top value on the ValueStack wrapped in a
successful result of the delivery scheme (Section 6.1)

• if it fails, next phases upon run determine the error index of the input and col-
lect the rule traces. Each phase respects the rules that are marked as quiet. Finally,
parserError is wrapped in the error result of the delivery scheme:

else {

val principalErrorIndex: Int =

phase1_establishPrincipalErrorIndex ()

val parseError: ParseError = // rest phases

scheme.parseError(parseError)

}

A rule should return the tracing information when the execution path reaches it. There
is no code yet that preserves the tracing information (Section 7). A rule code generation
is encapsulated in a reciprocal class. The class has two versions of code rendering: for
the parsing phase and for the error collecting phase. Consider the CharMatch class for the
basic char rule:
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case class CharMatch(charTree: Tree) extends TerminalOpTree {

def ruleTraceTerminal =

q"org.parboiled2.RuleTrace.CharMatch($charTree)"

def renderInner(wrapped: Boolean ): Tree = {

val unwrappedTree = q"cursorChar == $charTree && __advance ()"

if (wrapped)

q"$unwrappedTree && __updateMaxCursor () || __registerMismatch ()"

else unwrappedTree

}

}

The unwrappedTree has a code described in Section 7. The addendum is that CharMatch
renders based on the wrapped flag. And the wrapped version should either update the max
cursor if it matches, or register a mismatch. TerminalOpTree implements the mismatch
registration and the error tracing information.

9 Further Work

Obstacles to wider optimizations originate in the narrow scope of the rule macro applica-
tion, as mentioned in Section 7.2. Notably, it blocks cross-rule optimizations and indirectly
increases the code base. For example, (Ford, 2004) theoretically showed that oneOrMore,
option, and and-predicate operators are “syntactic sugar”, i.e. the combination of other
operators that can substitute them. Staging and compilation techniques (Rompf & Odersky,
2010) might evaporate intermediate data creation. But they require a much wider scope.
And parboiled2 should explicitly implement “syntactic sugar” operators individually for
the sake of runtime effectiveness.

Single method code generation by macro also limits a code block to handle all the facil-
ities (like debugging and tracing). Such code generation potentially blow up the method
code size (limited by JVM), complicate the code base support, and lessen parboiled2
versions back compatibility.

Another problem arises from the fact that the rule macro depends on the context that
it does not control. For example, a rule might be assigned either to val or def. Both
approaches have pros and cons. But we should make design decisions that define inner
implementation and library usages. This is another point where backward compatibility
suffers.

Creating higher-ordered rules (a method that takes another rule as a parameter) is also
impossible with the current version of Scala Macros.

The origins of the ValueStack arise from the inefficiency of the combinator approaches
– they produce too many intermediate data structures. The first negative thing is parboiled2
shifts side-effect result composition too much on the developers’ shoulders. Hence, again
we are constrained with the API and backward compatibility. Another drawback is the
ValueStack type-based verification, which is good for the user when the type check
passes. If a user makes a mistake somewhere in typing (i.e., missed an argument type
in lambda for action operation), the Scala compiler fires tens of lines of machine-generated
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typing errors that are really hard to interpret by a human. (Jonnalagedda et al., 2014)
showed how to eliminate intermediate data structures automatically.

The described limitations restrict intuitive feature implementation: creating custom rules
that need inner API access. For example, it is hard to implement a rule that tracks position
coordinates of parsed AST nodes.

The good news is that a new version of Scala Macros should be sufficient to overcome
all the obstacles (Liu & Burmako, 2017).
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